Affiliation:
1. Department of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Abstract
SUMMARYFull-waveform inversion (FWI) is an effective tool to retrieve a high-resolution subsurface velocity model. The source wavelet accuracy plays an important role in reaching that goal. So we often need to estimate the source function before or within the inversion process. Source estimation requires additional computational cost, and an inaccurate source estimation can hamper the convergence of FWI. We develop a source-independent waveform inversion utilizing a recently introduced wavefield reconstruction based method, which we refer to as efficient wavefield inversion (EWI). In EWI, we essentially reconstruct the wavefield by fitting it to the observed data as well as a wave equation based on iterative Born scattering. However, a wrong source wavelet will induce errors in the reconstructed wavefield, which may lead to a divergence of this optimization problem. We use a convolution-based source-independent misfit function to replace the conventional data fitting term in EWI to formulate a source-independent EWI (SIEWI) objective function. By convolving the observed data with a reference trace from the predicted data and convolving the predicted data with a reference trace from the observed data, the influence of the source wavelet on the optimization is mitigated. In SIEWI, this new formulation is able to mitigate the cycle-skipping issue and the source wavelet uncertainty simultaneously. We demonstrate those features on the Overthrust model and a modified Marmousi model. Application on a 2-D real data set also shows the effectiveness of the proposed method.
Funder
King Abdullah University of Science and Technology
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献