Optimized Model Parameterization using Compact Full Waveform Inversion

Author:

Xu Linan1ORCID,Manukyan Edgar2,Maurer Hansruedi1

Affiliation:

1. Institute of Geophysics, ETH Zurich, Switzerland

2. Nagra, Switzerland

Abstract

Summary Seismic Full Waveform Inversion (FWI) has the potential to produce high-resolution subsurface images, but the computational resources required for realistically sized problems can be prohibitively large. In terms of computational costs, Gauss-Newton algorithms are more attractive than the commonly employed conjugate gradient methods, because the former have favorable convergence properties. However, efficient implementations of Gauss-Newton algorithms require an excessive amount of computer memory for larger problems. To address this issue, we introduce Compact Full Waveform Inversion (CFWI). Here, a suitable inverse model parameterization is sought that allows representing all subsurface features, potentially resolvable by a particular source-receiver deployment, but using only a minimum number of model parameters. In principle, an inverse model parameterization, based on the Eigenvalue decomposition, would be optimal, but this is computationally not feasible for realistic problems. Instead, we present two alternative parameter transformations, namely the Haar and the Hartley transformations, with which similarly good results can be obtained. By means of a suite of numerical experiments, we demonstrate that these transformations allow the number of model parameters to be reduced to only a few percent of the original parameterization without any significant loss of spatial resolution. This facilitates efficient solutions of large-scale FWI problems with explicit Gauss-Newton algorithms.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3