A study of the monsoonal hydrology contribution using a 8-yr record (2010–2018) from superconducting gravimeter OSG-060 at Djougou (Benin, West Africa)

Author:

Hinderer J1,Hector B2,Riccardi U3ORCID,Rosat S1ORCID,Boy J-P1,Calvo M4,Littel F1,Bernard J-D1

Affiliation:

1. Institut de Physique du Globe de Strasbourg, UMR 7516, CNRS/Université de Strasbourg, 67084 France

2. Institut des Géosciences de l'Environnement, Grenoble, 38058 France

3. Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), University “Federico II” of Naples, 80126 Italy

4. Instituto Geografico Nacional, Madrid, 28003 Spain

Abstract

SUMMARY We analyse a nearly 8-yr record (2010–2018) of the superconducting gravimeter OSG-060 located at Djougou (Benin, West Africa). After tidal analysis removing all solid Earth and ocean loading tidal contributions and correcting for the long-term instrumental drift and atmospheric loading, we obtain a gravity residual signal which is essentially a hydrological signal due to the monsoon. This signal is first compared to several global hydrology models (ERA, GLDAS and MERRA). Our superconducting gravimeter residual signal is also superimposed onto episodic absolute gravity measurements and to space gravimetry GRACE data. A further comparison is done using local hydrological data like soil moisture in the very superficial layer (0–1.2 m), water table depth and rainfall. The temporal evolution of the correlation coefficient between the gravity observation and both the soil moisture and the water table is well explained by the direct infiltration process of rain water together with the lateral transfer discharging the water table. Finally, we compute the water storage changes (WSC) using a simulation based on the physically based Parflow-CLM numerical model of the catchment, which solves the water and energy budget from the impermeable bedrock to the top of the canopy layer using the 3-D Richards equation for the water transfers in the ground, the kinematic wave equation for the surface runoff and a land surface model (CLM) for the energy budget and evapotranspiration calculation. This model forced by rain is in agreement with evapotranspiration and stream flow data and leads to simulated water storage changes that nicely fit to the observed gravity signal. This study points out the important role played by surface gravity changes in terms of a reliable proxy for water storage changes occurring in small catchments.

Funder

Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique

Regional Direction of Food, Agriculture and Forestry of the Auvergne-Rhône-Alpes region

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3