Multiomics approach to profiling Sertoli cell maturation during development of the spermatogonial stem cell niche

Author:

Voigt A L12,Dardari R12,Lara N L M12,He T12,Steele H12,Dufour A13,Orwig K E4,Dobrinski I12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary , Calgary, Canada

2. Faculty of Veterinary Medicine, University of Calgary , Calgary, Canada

3. Department of Physiology and Pharmacology, University of Calgary , Calgary, Canada

4. Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA

Abstract

AbstractSpermatogonial stem cells (SSCs) are the basis of spermatogenesis, a complex process supported by a specialized microenvironment, called the SSC niche. Postnatal development of SSCs is characterized by distinct metabolic transitions from prepubertal to adult stages. An understanding of the niche factors that regulate these maturational events is critical for the clinical application of SSCs in fertility preservation. To investigate the niche maturation events that take place during SSC maturation, we combined different ‘-omics’ technologies. Serial single cell RNA sequencing analysis revealed changes in the transcriptomes indicative of niche maturation that was initiated at 11 years of age in humans and at 8 weeks of age in pigs, as evident by Monocle analysis of Sertoli cells and peritubular myoid cell (PMC) development in humans and Sertoli cell analysis in pigs. Morphological niche maturation was associated with lipid droplet accumulation, a characteristic that was conserved between species. Lipidomic profiling revealed an increase in triglycerides and a decrease in sphingolipids with Sertoli cell maturation in the pig model. Quantitative (phospho-) proteomics analysis detected the activation of distinct pathways with porcine Sertoli cell maturation. We show here that the main aspects of niche maturation coincide with the morphological maturation of SSCs, which is followed by their metabolic maturation. The main aspects are also conserved between the species and can be predicted by changes in the niche lipidome. Overall, this knowledge is pivotal to establishing cell/tissue-based biomarkers that could gauge stem cell maturation to facilitate laboratory techniques that allow for SSC transplantation for restoration of fertility.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3