Excess palmitate induces decidual stromal cell apoptosis via the TLR4/JNK/NF-kB pathways and possibly through glutamine oxidation

Author:

Ha Si-Yao1,Qiu Xue-Min1,Lai Zhen-Zhen1,Yang Hui-Li1,Wang Yan1,Ruan Lu-Yu1,Shi Jia-Wei1,Zhu Xiao-Yong12ORCID,Li Da-Jin1ORCID,Li Ming-Qing12ORCID

Affiliation:

1. Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People’s Republic of China

2. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People’s Republic of China

Abstract

Abstract During gestation, excess palmitate (PA) is enriched in decidua. Both excess PA and decidual dysfunctions are associated with numerous adverse pregnancy outcomes such as gestational diabetes, preeclampsia and preterm birth and intrauterine growth restriction. Here, mRNA data about the effects of PA were collected from multiple databases and analyzed. Human decidual tissues were obtained from clinically normal pregnancies, terminated for non-medical reasons, during the first trimester, and decidual stromal cells (DSCs) were isolated and exposed to PA, alone or together with the inhibitors of Toll-like receptor 4 (TLR4), Jun N-terminal kinase (JNK), nuclear factor-kappa-gene binding (NF-kB) or glutamine (GLN) oxidation. Furthermore, DSCs were transfected with lentiviral particles overexpressing human TLR4. We demonstrate that excess PA interacting with its receptor TLR4 disturbs DSC hemostasis during the first trimester. Specifically, high PA signal induced DSC apoptosis and formed an inflammatory program (elevated interleukin-1 beta and decreased interleukin-10) via the activation of TLR4/JNK/NF-kB pathways. A complexed cross-talk was found between TLR4/JNK/NF-kB signals and PA deposition in DSCs. Besides, under an excess PA environment, GLN oxidation was significantly enhanced in DSCs and the suppression of GLN oxidation further augmented PA-mediated DSC apoptosis and inflammatory responses. In conclusion, excess PA induces apoptosis and inflammation in DSCs via the TLR4/JNK/NF-kB pathways, which can be augmented by the suppression of GLN oxidation.

Funder

Program for Zhuoxue of Fudan University

Oriented Project of Science and Technology Innovation from Key Lab of Reproduction Regulation of NPFPC

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3