Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway

Author:

Wang Zheng12,Zhao Gongxiao3,Zibrila Abdoulaye Issotina3,Li Yubei4,Liu Jinjun13ORCID,Feng Weiyi2ORCID

Affiliation:

1. Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China

2. Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

3. Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, Xi’an, China

4. College of Clinical Medicine, Xi’an Medical University, Xi’an, China

Abstract

Abstract Hypoxia-induced oxidative stress and apoptosis of trophoblast are involved in the pathogenesis of preeclampsia (PE). Extensive research reports that the principal vagal neurotransmitter acetylcholine (ACh) shows anti-oxidative and anti-apoptotic effects in various diseases models. However, the role of ACh in hypoxic trophoblast remains unknown. Here, we examined the apoptotic levels of human placenta and explored the role(s) of ACh on cobalt chloride (CoCl2)-treated (trophoblast-derived) HTR-8/SVneo cells for mimicking hypoxic injuries. Cell counting kit-8 (CCK-8), dihydroethidium (DHE) probe, western blotting, immunofluorescence staining, migration and invasion assay were employed in the current study. Our data showed that placentas from PE women exhibited increased level of reactive oxygen species (ROS) and apoptotic index than those in normal pregnancy. Our in vitro study showed that CoCl2 enhanced ROS generation and apoptosis in HTR-8/SVneo cells through the activation of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB) pathway. ACh significantly decreased hypoxia-induced ROS generation and the resulting apoptosis, accompanied by lowered phosphorylation of p38 MAPK and NF-κB. Western blotting analysis further confirmed that ACh decreased the ratio of pp38 MAPK/p38 MAPK, p-NF-κB/NF-κB, Bax/Bcl-2 and cleaved Caspase-3/Caspase-3. Besides, ACh promoted cell invasion and migration ability under hypoxic conditions. Atropine, the muscarinic receptor antagonist, abolished ACh’s effects mentioned above. Overall, our data showed that ACh exerted protective effects on hypoxia-induced oxidative stress and apoptosis in trophoblast cells via muscarinic receptors, indicating that improved vagal activity may be of therapeutic value in PE management.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3