A mouse testis serine protease, TESP1, as the potential SPINK3 receptor protein on mouse sperm acrosome

Author:

Ramachandran Shiyam Sundar1,Balu Rubhadevi1,Vilwanathan Ravikumar2,Jeyaraman Jeyakanthan3,Paramasivam Sudhakar Gandhi1ORCID

Affiliation:

1. Department of Biotechnology, BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India

2. Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

3. Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India

Abstract

Abstract Serine protease inhibitor Kazal type 3 (SPINK3) from mouse seminal vesicles is a Kazal-type trypsin inhibitor. It has been shown to bind to the sperm acrosome and modify sperm activity by influencing the sub-cellular Ca2+ influx. Previously, SPINK3 was reported to suppress in vitro sperm capacitation. However, under natural coitus, SPINK3 is removed from the mouse acrosome in the female reproductive tract, leading to successful fertilisation. Identification of the SPINK3 binding partner becomes essential to develop a contraceptive that works by prolonging the binding of SPINK3 to the sperm acrosome. We identified the SPINK3 receptor by using recombinant SPINK3 (rSPINK3). Testicular serine protease 1 (TESP1) was identified as the receptor for SPINK3 by 2D gel electrophoresis coupled with western blot analysis. To authenticate TESP1 as the receptor for SPINK3, sperm cells were incubated with TESP1 peptide antibody followed by determining the intracellular [Ca2+]i concentration by flow cytometry using Fluo-3 AM as a calcium probe. Furthermore, the 3D structures of SPINK3 and TESP1 were predicted by homology modelling (Schrodinger suite) using the crystal structure of pancreatic secretory trypsin inhibitor (PDB ID—1TGS) and human prostasin (PDB ID—3DFJ) as templates. The modelled protein structures were validated and subjected to molecular dynamics simulation (MDS) using GROMACS v5.0.5. Protein–protein docking was performed using HDOCK and the complex was validated by MDS. The results predicted that SPINK3 and TESP1 had strong binding affinity, with a dock score of −430.70 and 14 hydrogen bonds as key active site residues. If the binding affinity between SPINK3 and TESP1 could be increased, the SPINK3-TESP1 association will be prolonged, which will be helpful in the development of a male contraceptive.

Funder

Department of Biotechnology (DBT), Government of India

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3