Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells

Author:

Kaseder Melanie1,Schmid Nina1,Eubler Katja1,Goetz Katharina1,Müller-Taubenberger Annette1,Dissen Gregory A2,Harner Max1,Wanner Gerhard3,Imhof Axel4,Forne Ignasi4,Mayerhofer Artur1ORCID

Affiliation:

1. Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich , Planegg-Martinsried, Germany

2. Molecular Virology Core, Oregon Health & Science University Oregon National Primate Research Center , Beaverton, OR, USA

3. Ultrastructural Research, Department Biology I, Ludwig Maximilian University (LMU) , Planegg-Martinsried, Germany

4. Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU) , Planegg-Martinsried, Germany

Abstract

Abstract In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.

Funder

German Research Foundation

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3