Affiliation:
1. Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University , Hangzhou, China
2. Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University , Shanghai, China
Abstract
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.
Funder
Zhejiang Science and Technology
Fundamental Research Funds for the Provincial Universities of Zhejiang
Zhejiang A&F University Talent Initiative Project
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献