Affiliation:
1. Division of High Risk Pregnancy, MacKay Memorial Hospital, Taipei, Taiwan
2. Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
Abstract
Abstract
Slit proteins have been reported to act as axonal repellents in Drosophila; however, their role in the placental microenvironment has not been explored. In this study, we found that human placental multipotent mesenchymal stromal cells (hPMSCs) constitutively express Slit2. Therefore, we hypothesized that Slit2 expressed by hPMSCs could be involved in macrophage migration during placental inflammation through membrane cognate Roundabout (Robo) receptor signaling. In order to develop a preclinical in vitro mouse model of hPMSCs in treatment of perinatal infection, RAW 264.7 cells were used in this study. Slit2 interacted with Robo4 that was highly expressed in RAW 264.7 macrophages: their interaction increased the adhesive ability of RAW 264.7 cells and inhibited migration. Lipopolysaccharide (LPS)-induced CD11bCD18 expression could be inhibited by Slit2 and by hPMSC-conditioned medium (CM). LPS-induced activation of p38 and Rap1 was also attenuated by Slit2 and by hPMSC-CM. Noticeably, these inhibitory effects of hPMSC-CM decreased after depletion of Slit2 from the CM. Furthermore, we found that p38 siRNA inhibited LPS-induced Rap1 expression in RAW 264.7 cells, indicating that Rap1 functions downstream of p38 signaling. p38 siRNA increased cell adhesion and inhibited migration through reducing LPS-stimulated CD11bCD18 expression in RAW 264.7 cells. Thus, hPMSC-derived Slit2 may inhibit LPS-induced CD11bCD18 expression to decrease cell migration and increase adhesion through modulating the activity and motility of inflammatory macrophages in placenta. This may represent a novel mechanism for LPS-induced placental infection.
Funder
Ministry of Science and Technology of Taiwan
MacKay Memorial Hospital
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献