Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1 and ACTC1 as markers of early first trimester human trophoblast

Author:

Karvas Rowan M1ORCID,McInturf Samuel2,Zhou Jie3,Ezashi Toshihiko4,Schust Danny J3,Roberts R Michael45,Schulz Laura C13ORCID

Affiliation:

1. Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA

2. Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA

3. Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65212, USA

4. Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA

5. Department of Biochemistry University of Missouri, Columbia, MO 65211, USA

Abstract

Abstract Human placental development during early pregnancy is poorly understood. Many conceptuses are lost at this stage. It is thought that preeclampsia, intrauterine growth restriction and other placental syndromes that manifest later in pregnancy may originate early in placentation. Thus, there is a need for models of early human placental development. Treating human embryonic stem cells (hESCs) with BMP4 (bone morphogenic protein 4) plus A83-01 (ACTIVIN/NODAL signaling inhibitor) and PD173074 (fibroblast growth factor 2 or FGF2 signaling inhibitor) (BAP conditions) induces differentiation to the trophoblast lineage (hESCBAP), but it is not clear which stage of trophoblast differentiation these cells resemble. Here, comparison of the hESCBAP transcriptome to those of trophoblasts from human blastocysts, trophoblast stem cells and placentas collected in the first–third trimester of pregnancy by principal component analysis suggests that hESC after 8 days BAP treatment most resemble first trimester syncytiotrophoblasts. To further test this hypothesis, transcripts were identified that are expressed in hESCBAP but not in cultures of trophoblasts isolated from term placentas. Proteins encoded by four genes, GABRP (gamma-aminobutyric acid type A receptor subunit Pi), WFDC2 (WAP four-disulfide core domain 2), VTCN1 (V-set domain containing T-cell activation inhibitor 1) and ACTC1 (actin alpha cardiac muscle 1), immunolocalized to placentas at 4–9 weeks gestation, and their expression declined with gestational age (R2 = 0.61–0.83). None are present at term. Expression was largely localized to syncytiotrophoblast of both hESCBAP cells and placental material from early pregnancy. WFDC2, VTCN1 and ACTC1 have not previously been described in placenta. These results support the hypothesis that hESCBAP represent human trophoblast analogous to that of early first trimester and are a tool for discovery of factors important to this stage of placentation.

Funder

National Institutes of Health

Missouri Mission Enhancement

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynaecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3