In-vitro differentiation of early pig spermatogenic cells to haploid germ cells

Author:

Yu Kun1,Zhang Yi23,Zhang Bao-Lu4,Wu Han-Yu1,Jiang Wu-Qi1,Wang Su-Tian5,Han De-Ping1,Liu Yi-Xun6,Lian Zheng-Xing1ORCID,Deng Shou-Long26ORCID

Affiliation:

1. Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People’s Republic of China

2. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People’s Republic of China

3. Department of Medicine, Panzhihua University, Sichuan, Sichuan, People’s Republic of China

4. Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People’s Republic of China

5. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People’s Republic of China

6. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People’s Republic of China

Abstract

Abstract Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.

Funder

National Transgenic Creature Breeding Grand Project

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynaecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3