Metabolic and secretory recovery of slow frozen–thawed human ovarian tissue in vitro

Author:

Einenkel Rebekka1ORCID,Schallmoser Andreas1,Sänger Nicole1

Affiliation:

1. Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn , Bonn, Germany

Abstract

Abstract Within the options available for fertility preservation, cryopreservation of ovarian cortical tissue has become an important technique. Freezing and thawing procedures have been optimized to preserve tissue integrity and viability. However, the improvement of the tissue retransplantation is currently of great interest. Rapid angiogenesis is needed at the retransplantation site to accomplish sufficient blood supply to provide oxygen and nutrients. Many studies address this issue. However, we need to understand the physiology of the thawed tissue to gain further understanding of the complexities of the procedure. As freezing and thawing generally impairs cellular metabolism, we aimed to characterize the changes in metabolic activity and secretion of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) of frozen–thawed ovarian cortical tissue over time. Biopsy punches of ovarian cortical tissue from patients undergoing fertility preservation were maintained in culture without freezing or after a slow-freezing and thawing procedure. VEGF-A secretion was measured after 48 h by ELISA. To examine temporary changes, metabolic activity was assessed for both fresh and frozen–thawed tissue of the same patient. Metabolic activity and VEGF-A secretion were measured at 0, 24 and 48 h in culture. Thawed ovarian cortical tissue secreted significantly less VEGF-A compared to fresh ovarian cortical tissue within 48 h of culture. After thawing, metabolic activity was significantly reduced compared to fresh ovarian cortex but over the course of 48 h, the metabolic activity recovered. Similarly, VEGF-A secretion of thawed tissue increased significantly over 48 h. Here, we have shown that it takes 48 h for ovarian cortical tissue to recover metabolically after thawing, including VEGF-A secretion.

Funder

University Hospital Bonn

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3