Premature ovarian insufficiency in the XO female mouse on the C57BL/6J genetic background

Author:

Vaz B1,El Mansouri F23,Liu X23,Taketo T1234ORCID

Affiliation:

1. Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada

2. Department of Surgery, McGill University, Montreal, QC H4A3J1, Canada

3. Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada

4. Department of Obstetrics & Gynecology, McGill University, Montreal, QC H4A3J1, Canada

Abstract

Abstract In humans, all but 1% of monosomy 45.X embryos die in utero and those who reach term suffer from congenital abnormalities and infertility termed Turner’s syndrome (TS). By contrast, XO female mice on various genetic backgrounds show much milder physical defects and normal fertility, diminishing their value as an animal model for studying the infertility of TS patients. In this article, we report that XO mice on the C57BL/6J (B6) genetic background showed early oocyte loss, infertility or subfertility and high embryonic lethality, suggesting that the effect of monosomy X in the female germline may be shared between mice and humans. First, we generated XO mice on either a mixed N2(C3H.B6) or B6 genetic background and compared the number of oocytes in neonatal ovaries; N2.XO females retained 45% of the number of oocytes in N2.XX females, whereas B6.XO females retained only 15% of that in B6.XX females. Second, while N2.XO females were as fertile as N2.XX females, both the frequency of delivery and the total number of pups delivered by B6.XO females were significantly lower than those by B6.XX females. Third, after mating with B6 males, both N2.XO and B6.XO females rarely produced XO pups carrying paternal X chromosomes, although a larger percentage of embryos was found to be XO before implantation. Furthermore, B6.XO females delivered 20% XO pups among female progeny after mating with C3H males. We conclude that the impact of monosomy X on female mouse fertility depends on the genetic background.

Funder

Natural Sciences and Engineering Research Council of Canada

NSERC

Canadian Institutes of Health Research

CIHR

McGill Claude Gagnon Urology Research Studentship

McGill Center for Research in Reproduction and Development

CRRD

Fonds de la recherche en sante du Quebec

FRSQ

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3