The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome

Author:

Motomura K12,Romero R13456,Garcia-Flores V12,Leng Y12,Xu Y12,Galaz J12,Slutsky R1,Levenson D12,Gomez-Lopez N127ORCID

Affiliation:

1. Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA

2. Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA

3. Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA

4. Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA

5. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA

6. Detroit Medical Center, Detroit, MI, USA

7. Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA

Abstract

AbstractSterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1β. Lastly, using Nlrp3−/− mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.

Funder

Perinatology Research Branch

PRB

Division of Obstetrics and Maternal-Fetal Medicine

Division of Intramural Research

National Institute of Child Health and Human Development

National Institutes of Health

S. Department of Health and Human Services

NICHD

NIH

DHHS

Wayne State University Perinatal Initiative in Maternal

Perinatal and Child Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3