An asymmetrical multilevel inverter with minimum voltage stress and fewer components for photovoltaic renewable-energy system

Author:

Memon Rabail1,Mahar Mukhtiar Ahmed1,Larik Abdul Sattar1,shah Syed Asif Ali1

Affiliation:

1. Department of Electrical Engineering, Mehran University of Engineering and Technology , Jamshoro , Pakistan

Abstract

Abstract The enhanced power quality provided by multilevel inverters (MLIs) has made them more appropriate for medium- and high-power applications, including photovoltaic systems. Nevertheless, a prevalent limitation involves the necessity for numerous switches and increased voltage stress across these switches, consequently increasing the overall system cost. To address these challenges, a new 17-level asymmetrical MLI with fewer components and low voltage stress is proposed for the photovoltaic system. This innovative MLI configuration has four direct current (DC) sources and 10 switches. Based on the trinary sequence, the proposed topology uses photovoltaics with boost converters and fuzzy logic controllers as its DC sources. Mathematical equations are used to calculate crucial parameters for this proposed design, including total standing voltage per unit (TSVPU), cost function per level (CF/L), component count per level (CC/L) and voltage stress across the switches. The comparison is conducted by considering switches, DC sources, TSVPU, CF/L, gate driver circuits and CC/L with other existing MLI topologies. The analysis is carried out under various conditions, encompassing different levels of irradiance, variable loads and modulation indices. To reduce the total harmonic distortion of the suggested topology, the phase opposition disposition approach has been incorporated. The suggested framework is simulated in MATLAB®/Simulink®. The results indicate that the proposed topology achieves a well-distributed stress profile across the switches and has CC/L of 1.23, TSVPU of 5 and CF/L of 4.58 and 5.76 with weight coefficients of 0.5 and 1.5, respectively. These values are notably superior to those of existing MLI topologies. Simulation results demonstrate that the proposed topology maintains a consistent output at varying irradiance levels with FLCs and exhibits robust performance under variable loads and diverse modulation indices. Furthermore, the total harmonic distortion achieved with phase opposition disposition is 7.78%, outperforming alternative pulse width modulation techniques. In summary, it provides enhanced performance. Considering this, it is suitable for the photovoltaic system.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3