Benefit allocation of electricity–gas–heat–hydrogen integrated energy system based on Shapley value

Author:

Liu Yujiao1,Li Yan1,Rong Yiping1,Li Guoliang1,Wang Ruiqi2,Zhou Haini2

Affiliation:

1. Zaozhuang Power Supply Company of State Grid Shandong Province Electric Power Company , Zaozhuang City, Shandong 277101 , China

2. State Grid Shandong Integrated Energy Services , Jinan City, Shandong 250021 , China

Abstract

Abstract The integrated energy system is an important development direction for achieving energy transformation in the context of the low-carbon development era, and an integrated energy system that uses renewable energy can reduce carbon emissions and improve energy utilization efficiency. The electric power network and the natural gas network are important transmission carriers in the energy field, so the coupling relationship between them has been of wide concern. This paper establishes an integrated energy system considering electricity, gas, heat and hydrogen loads; takes each subject in the integrated energy system as the research object; analyses the economic returns of each subject under different operation modes; applies the Shapley value method for benefit allocation; and quantifies the contribution value of the subject to the alliance through different influencing factors to revise the benefit allocation value. Compared with the independent mode, the overall benefits of the integrated energy system increase in the cooperative mode and the benefits of all subjects increase. Due to the different characteristics of different subjects in terms of environmental benefits, collaborative innovation and risk sharing, the benefit allocation is reduced for new-energy subjects and increased for power-to-gas subjects and combined heat and power generation units after revising the benefit allocation, to improve the matching degree between the contribution level and the benefit allocation under the premise of increased profit for each subject. The cooperative mode effectively enhances the economic benefits of the system as a whole and individually, and provides a useful reference for the allocation of benefits of integrated energy systems. The analysis shows that the revised benefit distribution under the cooperative model increases by 3.86%, 4.08% and 3.13% for power-to-gas subjects, combined heat and power generation units, and new-energy units, respectively, compared with the independent function model.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3