Design of a Level-3 electric vehicle charging station using a 1-MW solar system via the distributed maximum power point tracking technique

Author:

Balal Afshin1ORCID,Giesselmann Michael1

Affiliation:

1. Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX 79409 , USA

Abstract

Abstract Solar power is mostly influenced by solar irradiation, weather conditions, solar array mismatches and partial shading conditions. Therefore, before installing solar arrays, it is necessary to simulate and determine the possible power generated. Maximum power point tracking is needed in order to make sure that, at any time, the maximum power will be extracted from the photovoltaic system. However, maximum power point tracking is not a suitable solution for mismatches and partial shading conditions. To overcome the drawbacks of maximum power point tracking due to mismatches and shadows, distributed maximum power point tracking is utilized in this paper. The solar farm can be distributed in different ways, including one DC–DC converter per group of modules or per module. In this paper, distributed maximum power point tracking per module is implemented, which has the highest efficiency. This technology is applied to electric vehicles (EVs) that can be charged with a Level 3 charging station in <1 hour. However, the problem is that charging an EV in <1 hour puts a lot of stress on the power grid, and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate. Therefore, a Level 3 (fast DC) EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue. Finally, the simulation result is reported using MATLAB®, LTSPICE and the System Advisor Model. Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day, which is enough to fully charge ~120 EVs each day. Additionally, the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants. For example, instead of supplying EVs with power from coal-fired power plants, 1989 pounds of CO2 will be eliminated from the air per hour.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3