Evidence for weak-coupling holography from the gauge/gravity correspondence for Dp-branes

Author:

Sekino Yasuhiro1

Affiliation:

1. Department of Liberal Arts and Sciences, Faculty of Engineering, Takushoku University, Tokyo 193-0985, Japan

Abstract

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling similarities and quasinormal modes of D0 black hole solutions;Journal of High Energy Physics;2023-11-22

2. Supersymmetric Wilson loops on the lattice in the large N limit;The European Physical Journal Special Topics;2023-01-25

3. Rotating particles in AdS: Holography at weak gauge coupling and without conformal symmetry;Progress of Theoretical and Experimental Physics;2022-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3