Parameter Optimization in Cluster Identification Algorithms for Characterizing Nanoclusters in Al–Mg–Si–Cu Alloys

Author:

Song MinYoung1ORCID,Kobayashi Equo1,Kim JaeHwang2ORCID

Affiliation:

1. Department of Materials Science and Engineering, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 , Japan

2. Carbon & Light Materials Group, Korea Institute of Industrial Technology , 222 Palbok-ro, Deokjin-gu, Jeonju-City 54853 , South Korea

Abstract

Abstract Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al–0.9% Mg–1.0% Si–0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al–Mg–Si(–Cu) alloys was introduced.

Funder

Korea Institute of Industrial Technology

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3