Towards Establishing Best Practice in the Analysis of Hydrogen and Deuterium by Atom Probe Tomography

Author:

Gault Baptiste12ORCID,Saksena Aparna1ORCID,Sauvage Xavier3,Bagot Paul4ORCID,Aota Leonardo S1,Arlt Jonas5ORCID,Belkacemi Lisa T67ORCID,Boll Torben8,Chen Yi-Sheng910ORCID,Daly Luke4911ORCID,Djukic Milos B12ORCID,Douglas James O2ORCID,Duarte Maria J1,Felfer Peter J13ORCID,Forbes Richard G14ORCID,Fu Jing15ORCID,Gardner Hazel M16,Gemma Ryota1718ORCID,Gerstl Stephan S A19,Gong Yilun14ORCID,Hachet Guillaume1,Jakob Severin20ORCID,Jenkins Benjamin M3ORCID,Jones Megan E21,Khanchandani Heena22,Kontis Paraskevas22ORCID,Krämer Mathias1ORCID,Kühbach Markus23,Marceau Ross K W24ORCID,Mayweg David20ORCID,Moore Katie L25,Nallathambi Varatharaja126ORCID,Ott Benedict C13,Poplawsky Jonathan D27ORCID,Prosa Ty28ORCID,Pundt Astrid29,Saha Mainak30,Schwarz Tim M1ORCID,Shang Yuanyuan31,Shen Xiao32,Vrellou Maria33,Yu Yuan34ORCID,Zhao Yujun35ORCID,Zhao Huan36ORCID,Zou Bowen32

Affiliation:

1. Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials) , Max-Planck-Straße 1, Düsseldorf 40237 , Germany

2. Department of Materials, Imperial College London, Royal School of Mines , Prince Consort Rd, South Kensington, London SW7 2AZ , UK

3. Groupe de Physique des Matériaux, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, UMR6634 , Avenue de l‘Université, BP12, 76800 Saint-Etienne-du-Rouvray , France

4. Department of Materials, University of Oxford , Parks Road, Oxford OX1 3PH , UK

5. Institute for Materials Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen D-37077 , Germany

6. Leibniz-Institute for Materials Engineering-IWT , Badgasteiner Straße 3, Bremen 28359 , Germany

7. MAPEX Center for Materials and Processes, Universität Bremen , Bibliothekstraße 1, Bremen 28359 , Germany

8. Institute for Applied Materials (IAM-WK) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344 , Germany

9. Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney , Camperdown, NSW 2006 , Australia

10. School of Materials Science and Engineering, Nayang Technological University , 50 Nanyang Avenue, 639798   Singapore

11. School of Geographical and Earth Sciences, University of Glasgow , 8NN University Avenue, Glasgow G12 8QQ , UK

12. Faculty of Mechanical Engineering, University of Belgrade , Kraljice Marije 16, Belgrade 11120 , Serbia

13. Department of Materials Science & Engineering, Institute I: General Materials Properties, Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstrasse 5, Erlangen 91058 , Germany

14. Quantum Foundations and Technologies Group, School of Mathematics and Physics, University of Surrey , Guildford, Surrey GU2 7XH, UK

15. Department of Mechanical and Aerospace Engineering, Monash University , 17 College Walk, Clayton, VIC 3168 , Australia

16. Materials Science and Engineering, UK Atomic Energy Authority, Culham Campus, Abingdon , Oxfordshire OX14 3DB , UK

17. Department of Applied Chemistry, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 , Japan

18. Micro/Nano Technology Center, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 , Japan

19. Scientific Center for Optical and Electron Microscopy, ETH Zurich , Otto-Stern-Weg 3, Zurich 8093 , Switzerland

20. Department of Physics, Chalmers University of Technology , Göteborg SE-412 96 , Sweden

21. National Nuclear Laboratory, Windscale Laboratory, Sellafield , Seascale, Cumbria CA20 1PG , UK

22. Department of Materials Science and Engineering, Norwegian University of Science and Technology , 325 Kjemiblokk 1 Gløshaugen, Trondheim 7491 , Norway

23. Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin , Zum Großen Windkanal 2, 12489 Berlin , Germany

24. Institute for Frontier Materials, Deakin University , Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216 , Australia

25. Department of Materials, University of Manchester , Oxford Road, Manchester M13 9PL , UK

26. Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen , Germany

27. Oak Ridge National Laboratory, Center for Nanophase Materials Sciences , 1 Bethel Valley Road, Oak Ridge, TN 37830 , USA

28. CAMECA Instruments, Inc. , 5470 Nobel Drive, Madison, WI 53711 , USA

29. Karlsruhe Institute of Technology KIT, IAM-WK , Kaiserstraße 12, Karlsruhe 36131 , Germany

30. Research Centre for Magnetic and Spintronic Materials, National Institute for Materials Science, 1-2-1 Sengen , Tsukuba, Ibaraki 305-0047 , Japan

31. Department of Materials Design, Institute of Hydrogen Technology , Helmholtz-Zentrum Hereon GmbH, Geesthacht 21502 , Germany

32. Institute of Materials Engineering, University of Kassel , Moenchebergstr.3, Kassel 34125 , Germany

33. Institute for Applied Materials, Karlsruhe Institute of Technology , Kaiserstrasse 12, Karlsruhe 76131 , Germany

34. Institute of Physics (IA), RWTH Aachen University , Otto-Blumenthal-Straße 18, Aachen 52056 , Germany

35. Institute for Materials, Ruhr-Universität Bochum , Universitätsstraße 150, 44801 Bochum , Germany

36. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xianning West Road, 28#, Xi’an, Shaanxi Province, 710049 , China

Abstract

Abstract As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3