Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome

Author:

Kwon Young-Soo1ORCID,Jin Sang Woo2,Song Hoseok2ORCID

Affiliation:

1. Department of Integrative Bioscience & Biotechnology, Sejong University , Seoul  05006 , Korea

2. BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital , Seoul  08308 , Korea

Abstract

Abstract Recurring mutations in genes encoding 3′ splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions −1 and −2 of 5′ splice sites of U12-type introns with GT-AG termini is not present. AG next to 5′ splice site introduced by a single nucleotide substitution at the −2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the −1 position of U12-type 5′ splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taxonomy of introns and the evolution of minor introns;Nucleic Acids Research;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3