Fission yeast Swi2 designates cell-type specific donor and stimulates Rad51-driven strand exchange for mating-type switching

Author:

Maki Takahisa1,Thon Geneviève2,Iwasaki Hiroshi13ORCID

Affiliation:

1. Institute of Innovative Research, Tokyo Institute of Technology , Yokohama , Kanagawa  226-8503, Japan

2. Department of Biology, University of Copenhagen , Copenhagen N, Denmark

3. Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology , Yokohama , Kanagawa  226-8503, Japan

Abstract

Abstract A haploid of the fission yeast Schizosaccharomyces pombe expresses either the P or M mating-type, determined by the active, euchromatic, mat1 cassette. Mating-type is switched by Rad51-driven gene conversion of mat1 using a heterochromatic donor cassette, mat2-P or mat3-M. The Swi2-Swi5 complex, a mating-type switching factor, is central to this process by designating a preferred donor in a cell-type-specific manner. Swi2-Swi5 selectively enables one of two cis-acting recombination enhancers, SRE2 adjacent to mat2-P or SRE3 adjacent to mat3-M. Here, we identified two functionally important motifs in Swi2, a Swi6 (HP1 homolog)-binding site and two DNA-binding AT-hooks. Genetic analysis demonstrated that the AT-hooks were required for Swi2 localization at SRE3 to select the mat3-M donor in P cells, while the Swi6-binding site was required for Swi2 localization at SRE2 to select mat2-P in M cells. In addition, the Swi2-Swi5 complex promoted Rad51-driven strand exchange in vitro. Taken together, our results show how the Swi2-Swi5 complex would localize to recombination enhancers through a cell-type specific binding mechanism and stimulate Rad51-driven gene conversion at the localization site.

Funder

Grants-in-Aid for Scientific Research

Japan Society for the Promotion of Science

Novo Nordisk Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3