RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli–Pepper aptamer FRET pair

Author:

Sampedro Vallina Néstor1,McRae Ewan K S1,Hansen Bente Kring1,Boussebayle Adrien1,Andersen Ebbe Sloth12ORCID

Affiliation:

1. Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University , DK-8000  Aarhus , Denmark

2. Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University , DK-8000  Aarhus , Denmark

Abstract

Abstract Cryogenic electron microscopy (cryo-EM) is a promising method for characterizing the structure of larger RNA structures and complexes. However, the structure of individual aptamers is difficult to solve by cryo-EM due to their low molecular weight and a high signal-to-noise ratio. By placing RNA aptamers on larger RNA scaffolds, the contrast for cryo-EM can be increased to allow the determination of the tertiary structure of the aptamer. Here we use the RNA origami method to scaffold two fluorescent aptamers (Broccoli and Pepper) in close proximity and show that their cognate fluorophores serve as donor and acceptor for FRET. Next, we use cryo-EM to characterize the structure of the RNA origami with the two aptamers to a resolution of 4.4 Å. By characterizing the aptamers with and without ligand, we identify two distinct modes of ligand binding, which are further supported by selective chemical probing. 3D variability analysis of the cryo-EM data show that the relative position between the two bound fluorophores on the origami fluctuate by only 3.5 Å. Our results demonstrate a general approach for using RNA origami scaffolds for characterizing small RNA motifs by cryo-EM and for positioning functional RNA motifs with high spatial precision.

Funder

European Union's Horizon 2020 Research and Innovation Program

Independent Research Fund Denmark

Canadian Natural Sciences and Engineering Research Council

Carlsberg Foundation Research Infrastructure

Innovation Foundation Denmark

European Research Council

Novo Nordisk Foundation Ascending Investigator

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3