FLIBase: a comprehensive repository of full-length isoforms across human cancers and tissues

Author:

Shi Qili1,Li Xinrong1,Liu Yizhe1,Chen Zhiao123,He Xianghuo123ORCID

Affiliation:

1. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai  200032 , China

2. Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University , Shanghai  200032 , China

3. Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University , Shanghai  200032 , China

Abstract

Abstract Regulatory processes at the RNA transcript level play a crucial role in generating transcriptome diversity and proteome composition in human cells, impacting both physiological and pathological states. This study introduces FLIBase (www.FLIBase.org), a specialized database that focuses on annotating full-length isoforms using long-read sequencing techniques. We collected and integrated long-read (351 samples) and short-read (12 469 samples) RNA sequencing data from diverse normal and cancerous human tissues and cells. The current version of FLIBase comprises a total of 983 789 full-length spliced isoforms, identified through long-read sequences and verified using short-read exon–exon splice junctions. Of these, 188 248 isoforms have been annotated, while 795 541 isoforms remain unannotated. By overcoming the limitations of short-read RNA sequencing methods, FLIBase provides an accurate and comprehensive representation of full-length transcripts. These comprehensive annotations empower researchers to undertake various downstream analyses and investigations. Importantly, FLIBase exhibits a significant advantage in identifying a substantial number of previously unannotated isoforms and tumor-specific RNA transcripts. These tumor-specific RNA transcripts have the potential to serve as a source of immunogenic recurrent neoantigens. This remarkable discovery holds tremendous promise for advancing the development of tailored RNA-based diagnostic and therapeutic strategies for various types of human cancer.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3