A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures

Author:

Bohdan Davyd R1,Voronina Valeria V2,Bujnicki Janusz M3,Baulin Eugene F3ORCID

Affiliation:

1. Department of Innovation and High Technology, Moscow Institute of Physics and Technology , Dolgoprudny 141701 , Russia

2. Department of Information Systems, Ulyanovsk State Technical University , Ulyanovsk 432027 , Russia

3. Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw , Warsaw 02-109 , Poland

Abstract

Abstract Understanding the 3D structure of RNA is key to understanding RNA function. RNA 3D structure is modular and can be seen as a composition of building blocks of various sizes called tertiary motifs. Currently, long-range motifs formed between distant loops and helical regions are largely less studied than the local motifs determined by the RNA secondary structure. We surveyed long-range tertiary interactions and motifs in a non-redundant set of non-coding RNA 3D structures. A new dataset of annotated LOng-RAnge RNA 3D modules (LORA) was built using an approach that does not rely on the automatic annotations of non-canonical interactions. An original algorithm, ARTEM, was developed for annotation-, sequence- and topology-independent superposition of two arbitrary RNA 3D modules. The proposed methods allowed us to identify and describe the most common long-range RNA tertiary motifs. Along with the prevalent canonical A-minor interactions, a large number of previously undescribed staple interactions were observed. The most frequent long-range motifs were found to belong to three main motif families: planar staples, tilted staples, and helical packing motifs.

Funder

Polish National Science Center

European Molecular Biology Organization

NCN

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3