PLASMe: a tool to identify PLASMid contigs from short-read assemblies using transformer

Author:

Tang Xubo1ORCID,Shang Jiayu1ORCID,Ji Yongxin1ORCID,Sun Yanni1ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR, China

Abstract

AbstractPlasmids are mobile genetic elements that carry important accessory genes. Cataloging plasmids is a fundamental step to elucidate their roles in promoting horizontal gene transfer between bacteria. Next generation sequencing (NGS) is the main source for discovering new plasmids today. However, NGS assembly programs tend to return contigs, making plasmid detection difficult. This problem is particularly grave for metagenomic assemblies, which contain short contigs of heterogeneous origins. Available tools for plasmid contig detection still suffer from some limitations. In particular, alignment-based tools tend to miss diverged plasmids while learning-based tools often have lower precision. In this work, we develop a plasmid detection tool PLASMe that capitalizes on the strength of alignment and learning-based methods. Closely related plasmids can be easily identified using the alignment component in PLASMe while diverged plasmids can be predicted using order-specific Transformer models. By encoding plasmid sequences as a language defined on the protein cluster-based token set, Transformer can learn the importance of proteins and their correlation through positionally token embedding and the attention mechanism. We compared PLASMe and other tools on detecting complete plasmids, plasmid contigs, and contigs assembled from CAMI2 simulated data. PLASMe achieved the highest F1-score. After validating PLASMe on data with known labels, we also tested it on real metagenomic and plasmidome data. The examination of some commonly used marker genes shows that PLASMe exhibits more reliable performance than other tools.

Funder

City University of Hong Kong

Hong Kong Innovation and Technology Commission

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3