Affiliation:
1. Merck & Co., Inc. , Rahway, NJ , USA
Abstract
Abstract
RIG-I (retinoic acid inducible gene-I) can sense subtle differences between endogenous and viral RNA in the cytoplasm, triggering an anti-viral immune response through induction of type I interferons (IFN) and other inflammatory mediators. Multiple crystal and cryo-EM structures of RIG-I suggested a mechanism in which the C-terminal domain (CTD) is responsible for the recognition of viral RNA with a 5′-triphoshate modification, while the CARD domains serve as a trigger for downstream signaling, leading to the induction of type I IFN. However, to date contradicting conclusions have been reached around the role of ATP in the mechanism of the CARD domains ejection from RIG-I’s autoinhibited state. Here we present an application of NMR spectroscopy to investigate changes induced by the binding of 5′-triphosphate and 5′-OH dsRNA, both in the presence and absence of nucleotides, to full length RIG-I with all its methionine residues selectively labeled (Met-[ϵ-13CH3]). With this approach we were able to identify residues on the CTD, helicase domain, and CARDs that served as probes to sense RNA-induced conformational changes in those respective regions. Our results were analyzed in the context of either agonistic or antagonistic RNAs, by and large supporting a mechanism proposed by the Pyle Lab in which CARD release is primarily dependent on the RNA binding event.
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献