DDMut: predicting effects of mutations on protein stability using deep learning

Author:

Zhou Yunzhuo12,Pan Qisheng12,Pires Douglas E V3ORCID,Rodrigues Carlos H M12,Ascher David B12ORCID

Affiliation:

1. School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane , Australia

2. Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute , Melbourne , Victoria , Australia

3. School of Computing and Information Systems, University of Melbourne , Melbourne , Victoria , Australia

Abstract

Abstract Understanding the effects of mutations on protein stability is crucial for variant interpretation and prioritisation, protein engineering, and biotechnology. Despite significant efforts, community assessments of predictive tools have highlighted ongoing limitations, including computational time, low predictive power, and biased predictions towards destabilising mutations. To fill this gap, we developed DDMut, a fast and accurate siamese network to predict changes in Gibbs Free Energy upon single and multiple point mutations, leveraging both forward and hypothetical reverse mutations to account for model anti-symmetry. Deep learning models were built by integrating graph-based representations of the localised 3D environment, with convolutional layers and transformer encoders. This combination better captured the distance patterns between atoms by extracting both short-range and long-range interactions. DDMut achieved Pearson's correlations of up to 0.70 (RMSE: 1.37 kcal/mol) on single point mutations, and 0.70 (RMSE: 1.84 kcal/mol) on double/triple mutants, outperforming most available methods across non-redundant blind test sets. Importantly, DDMut was highly scalable and demonstrated anti-symmetric performance on both destabilising and stabilising mutations. We believe DDMut will be a useful platform to better understand the functional consequences of mutations, and guide rational protein engineering. DDMut is freely available as a web server and API at https://biosig.lab.uq.edu.au/ddmut.

Funder

Australian Government Research Training Program Scholarship

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3