Genomic targets of the IRE1-XBP1s pathway in mediating metabolic adaptation in epithelial plasticity

Author:

Qiao Dianhua1,Skibba Melissa1,Xu Xiaofang1,Brasier Allan R12ORCID

Affiliation:

1. Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH) , Madison , WI 53705, USA

2. Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison , Madison , WI 1053705, USA

Abstract

Abstract Epithelial mesenchymal plasticity (EMP) is a complex cellular reprogramming event that plays a major role in tissue homeostasis. Recently we observed the unfolded protein response (UPR) triggers EMP through the inositol-requiring protein 1 (IRE1α)–X-box-binding protein 1 spliced (XBP1s) axis, enhancing glucose shunting to protein N glycosylation. To better understand the genomic targets of XBP1s, we identified its genomic targets using Cleavage Under Targets and Release Using Nuclease (CUT&RUN) of a FLAG-epitope tagged XBP1s in RSV infection. CUT&RUN identified 7086 binding sites in chromatin that were enriched in AP-1 motifs and GC-sequences. Of these binding sites, XBP1s peaks mapped to 4827 genes controlling Rho-GTPase signaling, N-linked glycosylation and ER-Golgi transport. Strikingly, XBP1s peaks were within 1 kb of transcription start sites of 2119 promoters. In addition to binding core mesenchymal transcription factors SNAI1 and ZEB1, we observed that hexosamine biosynthetic pathway (HBP) enzymes were induced and contained proximal XBP1s peaks. We demonstrate that IRE1α -XBP1s signaling is necessary and sufficient to activate core enzymes by recruiting elongation-competent phospho-Ser2 CTD modified RNA Pol II. We conclude that the IRE1α-XBP1s pathway coordinately regulates mesenchymal transcription factors and hexosamine biosynthesis in EMP by a mechanism involving recruitment of activated pSer2-Pol II to GC-rich promoters

Funder

NIH

NCATS

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3