RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling

Author:

Li Jun1,Chen Shi-Jie1ORCID

Affiliation:

1. Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri , Columbia, MO 65211, USA

Abstract

Abstract RNA 3D structures are critical for understanding their functions. However, only a limited number of RNA structures have been experimentally solved, so computational prediction methods are highly desirable. Nevertheless, accurate prediction of RNA 3D structures, especially those containing multiway junctions, remains a significant challenge, mainly due to the complicated non-canonical base pairing and stacking interactions in the junction loops and the possible long-range interactions between loop structures. Here we present RNAJP (‘RNA Junction Prediction’), a nucleotide- and helix-level coarse-grained model for the prediction of RNA 3D structures, particularly junction structures, from a given 2D structure. Through global sampling of the 3D arrangements of the helices in junctions using molecular dynamics simulations and in explicit consideration of non-canonical base pairing and base stacking interactions as well as long-range loop–loop interactions, the model can provide significantly improved predictions for multibranched junction structures than existing methods. Moreover, integrated with additional restraints from experiments, such as junction topology and long-range interactions, the model may serve as a useful structure generator for various applications.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference78 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3