A genome-wide map of DNA replication at single-molecule resolution in the malaria parasitePlasmodium falciparum

Author:

Totañes Francis Isidore Garcia1,Gockel Jonas2,Chapman Sarah E1,Bártfai Richárd2ORCID,Boemo Michael A1,Merrick Catherine J1ORCID

Affiliation:

1. Department of Pathology, University of Cambridge , Tennis Court Road , Cambridge  CB2 1QP, UK

2. Department of Molecular Biology, Radboud University , Geert Grooteplein 26-28 , 6525 GA  Nijmegen , The Netherlands

Abstract

AbstractThe malaria parasite Plasmodium falciparum replicates via schizogony: an unusual type of cell cycle involving asynchronous replication of multiple nuclei within the same cytoplasm. Here, we present the first comprehensive study of DNA replication origin specification and activation during Plasmodium schizogony. Potential replication origins were abundant, with ORC1-binding sites detected every ∼800 bp. In this extremely A/T-biased genome, the sites were biased towards areas of higher G/C content, and contained no specific sequence motif. Origin activation was then measured at single-molecule resolution using newly developed DNAscent technology: a powerful method of detecting replication fork movement via base analogues in DNA sequenced on the Oxford Nanopore platform. Unusually, origins were preferentially activated in areas of low transcriptional activity, and replication forks also moved fastest through lowly transcribed genes. This contrasts with the way that origin activation is organised in other systems, such as human cells, and suggests that P. falciparum has evolved its S-phase specifically to minimise conflicts between transcription and origin firing. This may be particularly important to maximise the efficiency and accuracy of schizogony, with its multiple rounds of DNA replication and its absence of canonical cell-cycle checkpoints.

Funder

European Research Council

Isaac Newton Trust

Royal Society

Department of Pathology, University of Cambridge

European Union's Horizon 2020 Research and Innovation programme

Engineering and Physical Sciences Research Council

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3