Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity

Author:

Sun Yuliangzi1,Shim Woo Jun1,Shen Sophie1,Sinniah Enakshi1,Pham Duy1ORCID,Su Zezhuo23,Mizikovsky Dalia1,White Melanie D1,Ho Joshua W K23,Nguyen Quan1,Bodén Mikael4ORCID,Palpant Nathan J1ORCID

Affiliation:

1. Institute for Molecular Bioscience, The University of Queensland , Brisbane , QLD , Australia

2. School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam , Hong Kong SAR , China

3. Laboratory of Data Discovery for Health Limited (D24H) , Hong Kong Science Park , Hong Kong SAR , China

4. School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane , QLD , Australia

Abstract

Abstract Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.

Funder

National Health and Medical Research Council

Australian Research Council

National Heart Foundation of Australia

Medical Research Future Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3