Differential requirements for Gcn5 and NuA4 HAT activities in the starvation-induced versus basal transcriptomes

Author:

Zheng Qiaoyun1,Qiu Hongfang1,Zhang Hongen1ORCID,Hinnebusch Alan G1ORCID

Affiliation:

1. Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD  20892, USA

Abstract

Abstract The histone acetyltransferase (HAT) subunit of coactivator complex SAGA, Gcn5, stimulates eviction of promoter nucleosomes at certain highly expressed yeast genes, including those activated by transcription factor Gcn4 in amino acid-deprived cells; however, the importance of other HAT complexes in this process was poorly understood. Analyzing mutations that disrupt the integrity or activity of HAT complexes NuA4 or NuA3, or HAT Rtt109, revealed that only NuA4 acts on par with Gcn5, and functions additively, in evicting and repositioning promoter nucleosomes and stimulating transcription of starvation-induced genes. NuA4 is generally more important than Gcn5, however, in promoter nucleosome eviction, TBP recruitment, and transcription at most other genes expressed constitutively. NuA4 also predominates over Gcn5 in stimulating TBP recruitment and transcription of genes categorized as principally dependent on the cofactor TFIID versus SAGA, except for the most highly expressed subset including ribosomal protein genes, where Gcn5 contributes strongly to PIC assembly and transcription. Both SAGA and NuA4 are recruited to promoter regions of starvation-induced genes in a manner that might be feedback controlled by their HAT activities. Our findings reveal an intricate interplay between these two HATs in nucleosome eviction, PIC assembly, and transcription that differs between the starvation-induced and basal transcriptomes.

Funder

NIH

NIH HPC Biowulf cluster

NHLBI

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3