Structural polymorphism driven by a register shift in a CGAG-rich region found in the promoter of the neurodevelopmental regulatorAUTS2gene

Author:

Novotný Aleš12ORCID,Plavec Janez123ORCID,Kocman Vojč13ORCID

Affiliation:

1. Slovenian NMR Centre, National Institute of Chemistry , Ljubljana  SI-1000, Slovenia

2. Faculty of Chemistry and Chemical Technology, University of Ljubljana , Ljubljana  SI-1000, Slovenia

3. EN-FIST Centre of Excellence , Ljubljana  SI-1000, Slovenia

Abstract

AbstractThe AUTS2 gene has been shown to influence brain development by controlling the number of neurons, promoting the growth of axons and dendrites and regulating neuronal migration. The expression of two isoforms of AUTS2 protein is precisely regulated and misregulation of their expression has been correlated with neurodevelopmental delay and autism spectrum disorder. A CGAG-rich region, which includes a putative protein binding site (PPBS), d(AGCGAAAGCACGAA), was found in the promoter region of AUTS2 gene. We show that oligonucleotides from this region adopt thermally stable non-canonical hairpin structures stabilized by G:C and sheared G:A base pairs arranged in a repeating structural motif we termed CGAG block. These motifs are formed consecutively, in a way that exploits a shift in register throughout the whole CGAG repeat to maximize the number of consecutive G:C and G:A base pairs. The differences in CGAG repeat shifting affect the structure of the loop region, where PPBS residues are predominantly located, specifically the loop length, types of base pairs and the pattern of base-base stacking. Finally, we propose a previously unexplored mechanism, by which different folds in the CGAG-rich region could cause a switch in expression between the full-length and C-terminal isoforms of AUTS2.

Funder

Slovenian Research Agency

Young Researcher

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference72 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3