NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells

Author:

Liu Rucong12,Wubulikasimu Zibaguli1,Cai Runze1,Meng Fanyi1,Cui Qinghua2ORCID,Zhou Yuan2,Li Yang1ORCID

Affiliation:

1. Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University , Beijing  100191, China

2. Department of Biomedical Informatics, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University , Beijing  100191, China

Abstract

Abstract NAT10-catalyzed N4-acetylcytidine (ac4C) has emerged as a vital post-transcriptional modulator on the coding transcriptome by promoting mRNA stability. However, its role in mammalian development remains unclear. Here, we found that NAT10 expression positively correlates with pluripotency in vivo and in vitro. High throughput ac4C-targeted RNA immunoprecipitation sequencing (ac4C-RIP-seq), NaCNBH3-based chemical ac4C sequencing (ac4C-seq) and liquid chromatography-tandem mass spectrometry (LC–MS/MS) assays revealed noticeable ac4C modifications in transcriptome of hESCs, among which transcripts encoding core pluripotency transcription factors are favorable targets of ac4C modification. Further validation assays demonstrate that genetic inactivation of NAT10, the ac4C writer enzyme, led to ac4C level decrease on target genes, promoted the core pluripotency regulator OCT4 (POU5F1) transcript decay, and finally impaired self-renewal and promoted early differentiation in hESCs. Together, our work presented here elucidates a previously unrecognized interconnectivity between the core pluripotent transcriptional network for the maintenance of human ESC self-renewal and NAT10-catalyzed ac4C RNA epigenetic modification.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Michigan Medicine-PKUHSC Joint Institute for Translational and Clinical Research

State Key Laboratory for Reproductive Regulation and Breeding of Grassland Livestock

State Key Laboratory of Artificial Microstructure & Mesoscopic Physics

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3