A virus-borne DNA damage signaling pathway controls the lysogeny-induction switch in a group of temperate pleolipoviruses

Author:

Chen Zhao1,Liu Ying2,Wang Yixuan1,Du Xincheng1,Deng Xiaoyuan1,Xiang Jialin1,Wang Yangyang1,Wang Jiao1,Krupovic Mart2ORCID,Du Shishen1ORCID,Chen Xiangdong1

Affiliation:

1. State Key laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan 430072,  China

2. Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit , F-75015 Paris , France

Abstract

Abstract Many prokaryotic viruses are temperate and their reactivation is tightly regulated. However, except for a few bacterial model systems, the regulatory circuits underlying the exit from lysogeny are poorly understood, especially in archaea. Here, we report a three-gene module which regulates the switch between lysogeny and replicative cycle in a haloarchaeal virus SNJ2 (family Pleolipoviridae). The SNJ2 orf4 encodes a winged helix-turn-helix DNA binding protein which maintains lysogeny through repressing the expression of the viral integrase gene intSNJ2. To switch to the induced state, two other SNJ2-encoded proteins, Orf7 and Orf8, are required. Orf8 is a homolog of cellular AAA+ ATPase Orc1/Cdc6, which is activated upon mitomycin C-induced DNA damage, possibly through posttranslational modification. Activated Orf8 initiates the expression of Orf7 which, in turn, antagonizes the function of Orf4, leading to the transcription of intSNJ2, thereby switching SNJ2 to the induced state. Comparative genomics analysis revealed that the SNJ2-like Orc1/Cdc6-centered three-gene module is common in haloarchaeal genomes, always present in the context of integrated proviruses. Collectively, our results uncover the first DNA damage signaling pathway encoded by a temperate archaeal virus and reveal an unexpected role of the widely distributed virus-encoded Orc1/Cdc6 homologs.

Funder

National Natural Science Foundation of China

National Foundation for Fostering Talents of Basic Sciences

Research (Innovative) Fund of Laboratory Wuhan University

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3