‘SAXS-osmometer’ method provides measurement of DNA pressure in viral capsids and delivers an empirical equation of state

Author:

Villanueva Valencia José Ramón1ORCID,Li Dong2,Casjens Sherwood R3,Evilevitch Alex12ORCID

Affiliation:

1. Department of Experimental Medical Science and NanoLund, Lund University , Box 124 , Lund , Sweden

2. Physics Department, Carnegie Mellon University , Pittsburgh , PA  15213 , USA

3. Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine , Salt Lake City , UT  84112 , USA

Abstract

Abstract We present a novel method that provides a measurement of DNA pressure in viral capsids using small angle X-ray scattering (SAXS). This method, unlike our previous assay, does not require triggering genome release with a viral receptor. Thus, it can be used to determine the existence of a pressurized genome state in a wide range of virus systems, even if the receptor is not known, leading to a better understanding of the processes of viral genome uncoating and encapsidation in the course of infection. Furthermore, by measuring DNA pressure for a collection of bacteriophages with varying DNA packing densities, we derived an empirical equation of state (EOS) that accurately predicts the relation between the capsid pressure and the packaged DNA density and includes the contribution of both DNA–DNA interaction energy and DNA bending stress to the total DNA pressure. We believe that our SAXS-osmometer method and the EOS, combined, provide the necessary tools to investigate physico-chemical properties of confined DNA condensates and mechanisms of infection, and may also provide essential data for the design of viral vectors in gene therapy applications and development of antivirals that target the pressurized genome state.

Funder

Mats Paulsson Foundation

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3