DNA binding specificity of all four Saccharomyces cerevisiae forkhead transcription factors

Author:

Cooper Brendon H1,Dantas Machado Ana Carolina1,Gan Yan12,Aparicio Oscar M23,Rohs Remo134ORCID

Affiliation:

1. Department of Quantitative and Computational Biology, University of Southern California , Los Angeles , CA  90089, USA

2. Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California , Los Angeles , CA  90089, USA

3. Norris Comprehensive Cancer Center, University of Southern California , Los Angeles , CA  90033, USA

4. Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California , Los Angeles , CA  90089, USA

Abstract

Abstract Quantifying the nucleotide preferences of DNA binding proteins is essential to understanding how transcription factors (TFs) interact with their targets in the genome. High-throughput in vitro binding assays have been used to identify the inherent DNA binding preferences of TFs in a controlled environment isolated from confounding factors such as genome accessibility, DNA methylation, and TF binding cooperativity. Unfortunately, many of the most common approaches for measuring binding preferences are not sensitive enough for the study of moderate-to-low affinity binding sites, and are unable to detect small-scale differences between closely related homologs. The Forkhead box (FOX) family of TFs is known to play a crucial role in regulating a variety of key processes from proliferation and development to tumor suppression and aging. By using the high-sequencing depth SELEX-seq approach to study all four FOX homologs in Saccharomyces cerevisiae, we have been able to precisely quantify the contribution and importance of nucleotide positions all along an extended binding site. Essential to this process was the alignment of our SELEX-seq reads to a set of candidate core sequences determined using a recently developed tool for the alignment of enriched k-mers and a newly developed approach for the reprioritization of candidate cores.

Funder

National Institutes of Health

Human Frontier Science Program

USC Provost Fellowship

USC Dornsife Bridge Institute Catalyst

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3