Recipient UvrD helicase is involved in single- to double-stranded DNA conversion during conjugative plasmid transfer

Author:

Shen Minjia12,Goldlust Kelly3,Daniel Sandra1,Lesterlin Christian3ORCID,Yamaichi Yoshiharu1ORCID

Affiliation:

1. Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , 91198, Gif-sur-Yvette , France

2. Graduate School of Structure and Dynamics of Living Systems, Université Paris-Saclay , 91190, Gif-sur-Yvette , France

3. Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1 , CNRS, Inserm, UMR5086, 69007,  Lyon , France

Abstract

AbstractDissemination of antibiotic resistance, a current societal challenge, is often driven by horizontal gene transfer through bacterial conjugation. During conjugative plasmid transfer, single-stranded (ss) DNA is transferred from the donor to the recipient cell. Subsequently, a complete double-stranded (ds) plasmid molecule is generated and plasmid-encoded genes are expressed, allowing successful establishment of the transconjugant cell. Such dynamics of transmission can be modulated by host- or plasmid-encoded factors, either in the donor or in the recipient cell. We applied transposon insertion sequencing to identify host-encoded factors that affect conjugative transfer frequency in Escherichia coli. Disruption of the recipient uvrD gene decreased the acquisition frequency of conjugative plasmids belonging to different incompatibility groups. Results from various UvrD mutants suggested that dsDNA binding activity and interaction with RNA polymerase are dispensable, but ATPase activity is required for successful plasmid establishment of transconjugant cells. Live-cell microscopic imaging showed that the newly transferred ssDNA within a uvrD− recipient often failed to be converted to dsDNA. Our work suggested that in addition to its role in maintaining genome integrity, UvrD is also key for the establishment of horizontally acquired plasmid DNA that drives genome diversity and evolution.

Funder

French National Research Agency

Foundation for Medical Research in France

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3