Genetic Increases in Olfactory Bulb BDNF Do Not Enhance Survival of Adult-Born Granule Cells

Author:

McDole Brittnee1,Berger Rachel1,Guthrie Kathleen1

Affiliation:

1. Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA

Abstract

Abstract Adult-born neurons produced in the dentate gyrus subgranular zone (SGZ) develop as excitatory hippocampal granule cells (GCs), while those from the subventricular zone (SVZ) migrate to the olfactory bulb (OB), where most develop as GABAergic olfactory GCs. Both types of neurons express TrkB as they mature. Normally ~50% of new olfactory GCs survive, but survival declines if sensory drive is reduced. Increases in endogenous brain-derived neurotrophic factor (BDNF) in hippocampus, particularly with wheel running, enhance dentate GC survival. Whether survival of new olfactory GCs is impacted by augmenting BDNF in the OB, where they mature and integrate, is not known. Here, we determined if increasing OB BDNF expression enhances survival of new GCs, and if it counters their loss under conditions of reduced sensory activity. Neurogenesis was assessed under normal conditions, and following unilateral naris occlusion, in mice overexpressing BDNF in the granule cell layer (GCL). OB BDNF levels were significantly higher in transgenic mice compared to controls, and this was maintained following sensory deprivation. Bromodeoxyuridine (BrdU) cell birth dating showed that at 12–14 days post-BrdU, numbers of new GCs did not differ between genotypes, indicating normal recruitment to the OB. At later intervals, transgenic and control mice showed levels of GC loss in deprived and nondeprived animals that were indistinguishable, as was the incidence of apoptotic cells in the GCL. These results demonstrate that, in contrast to new dentate GCs, elevations in endogenous BDNF do not enhance survival of adult-born olfactory GCs.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Oxford University Press (OUP)

Subject

Behavioral Neuroscience,Physiology (medical),Sensory Systems,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3