Reaction of threonine synthase with the substrate analogue 2-amino-5-phosphonopentanoate: implications into the proton transfer at the active site

Author:

Machida Yasuhiro1,Murakawa Takeshi2,Sakai Akiko1,Shoji Mitsuo34,Shigeta Yasuteru3,Hayashi Hideyuki1

Affiliation:

1. Department of Chemistry, Takatsuki, Osaka 569-8686, Japan

2. Department of Biochemistry, Osaka Medical College, Daigamumachi 2-7, Takatsuki, Osaka 569-8686, Japan

3. Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan

4. JST, PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan

Abstract

AbstractThreonine synthase catalyses the conversion of O-phospho-l-homoserine and a water molecule to l-threonine and has the most complex catalytic mechanism among the pyridoxal 5′-phosphate-dependent enzymes. In order to study the less-characterized earlier stage of the catalytic reaction, we studied the reaction of threonine synthase with 2-amino-5-phosphonopentanoate, which stops the catalytic reaction at the enamine intermediate. The global kinetic analysis of the triphasic spectral changes showed that, in addition to the theoretically expected pathway, the carbanion is rapidly reprotonated at Cα to form an aldimine distinct from the external aldimine directly formed from the Michaelis complex. The Kd for the binding of inhibitor to the enzyme decreased with increasing pH, showing that the 2-amino-group-unprotonated form of the ligand binds to the enzyme. On the other hand, the rate constants for the proton migration steps within the active site are independent of the solvent pH, indicating that protons are shared by the active dissociative groups and are not exchanged with the solvent during the course of catalysis. This gives an insight into the role of the phosphate group of the substrate, which may increase the basicity of the ε-amino group of the catalytic lysine residue in the active site.

Funder

JSPS KEKENHI

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3