Affiliation:
1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, China
Abstract
Abstract
How have genes evolved within a well-known genome phylogeny? Many protein-coding genes should have evolved as a whole at the gene level, and some should have evolved partly through fragments at the subgene level. To comprehensively explore such complex homologous relationships and better understand gene family evolution, here, with de novo-identified modules, the subgene units which could consecutively cover proteins within a set of closely related species, we applied a new phylogeny-based approach that considers evolutionary models with partial homology to classify all protein-coding genes in nine Drosophila genomes. Compared with two other popular methods for gene family construction, our approach improved practical gene family classifications with a more reasonable view of homology and provided a much more complete landscape of gene family evolution at the gene and subgene levels. In the case study, we found that most expanded gene families might have evolved mainly through module rearrangements rather than gene duplications and mainly generated single-module genes through partial gene duplication, suggesting that there might be pervasive subgene rearrangement in the evolution of protein-coding gene families. The use of a phylogeny-based approach with partial homology to classify and analyze protein-coding gene families may provide us with a more comprehensive landscape depicting how genes evolve within a well-known genome phylogeny.
Funder
State Key Basic Research and Development Plan
State Key Laboratory of Earth Surface Processes and Resource Ecology
Publisher
Oxford University Press (OUP)
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献