Long-Read Genome Assemblies Reveal Extraordinary Variation in the Number and Structure of MHC Loci in Birds

Author:

He Ke1,Minias Piotr2,Dunn Peter O23

Affiliation:

1. College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China

2. Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Poland

3. Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, WI, USA

Abstract

Abstract Our knowledge of the Major Histocompatibility Complex (MHC) in birds is limited because it often consists of numerous duplicated genes within individuals that are difficult to assemble with short read sequencing technology. Long-read sequencing provides an opportunity to overcome this limitation because it allows the assembly of long regions with repetitive elements. In this study, we used genomes based on long-read sequencing to predict the number and location of MHC loci in a broad range of bird taxa. From the long-read-based genomes of 34 species, we found that there was extremely large variation in the number of MHC loci between species. Overall, there were greater numbers of both class I and II loci in passerines than nonpasserines. The highest numbers of loci (up to 193 class II loci) were found in manakins (Pipridae), which had previously not been studied at the MHC. Our results provide the first direct evidence from passerine genomes of this high level of duplication. We also found different duplication patterns between species. In some species, both MHC class I and II genes were duplicated together, whereas in most species they were duplicated independently. Our study shows that the analysis of long-read-based genomes can dramatically improve our knowledge of MHC structure, although further improvements in chromosome level assembly are needed to understand the evolutionary mechanisms producing the extraordinary interspecific variation in the architecture of the MHC region.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3