A Connectomic Atlas of the Human Cerebrum—Chapter 1: Introduction, Methods, and Significance

Author:

Baker Cordell M1,Burks Joshua D1,Briggs Robert G1,Conner Andrew K1,Glenn Chad A1,Sali Goksel1,McCoy Tressie M2,Battiste James D3,O’Donoghue Daniel L4,Sughrue Michael E15

Affiliation:

1. Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

2. Department of Physical Therapy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

3. Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

4. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

5. Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia

Abstract

ABSTRACT BACKGROUND As knowledge of the brain has increased, clinicians have learned that the cerebrum is composed of complex networks that interact to execute key functions. While neurosurgeons can typically predict and preserve primary cortical function through the primary visual and motor cortices, preservation of higher cognitive functions that are less well localized in regions previously deemed “silent” has proven more difficult. This suggests these silent cortical regions are more anatomically complex and redundant than our previous methods of inquiry can explain, and that progress in cerebral surgery will be made with an improved understanding of brain connectomics. Newly published parcellated cortex maps provide one avenue to study such connectomics in greater detail, and they provide a superior framework and nomenclature for studying cerebral function and anatomy. OBJECTIVE To describe the structural and functional aspects of the 180 distinct areas that comprise the human cortex model previously published under the Human Connectome Project (HCP). METHODS We divided the cerebrum into 8 macroregions: lateral frontal, motor/premotor, medial frontal, insular, temporal, lateral parietal, medial parietal, and occipital. These regions were further subdivided into their relevant parcellations based on the HCP cortical scheme. Connectome Workbench was used to localize parcellations anatomically and to demonstrate their functional connectivity. DSI studio was used to assess the structural connectivity for each parcellation. RESULTS The anatomy, functional connectivity, and structural connectivity of all 180 cortical parcellations identified in the HCP are compiled into a single atlas. Within each section of the atlas, we integrate this information, along with what is known about parcellation function to summarize the implications of these data on network connectivity. CONCLUSION This multipart supplement aims to build on the work of the HCP. We present this information in the hope that the complexity of cerebral connectomics will be conveyed in a more manageable format that will allow neurosurgeons and neuroscientists to accurately communicate and formulate hypotheses regarding cerebral anatomy and connectivity. We believe access to this information may provide a foundation for improving surgical outcomes by preserving lesser-known networks.

Funder

NIH

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3