Sources of noise exposure across Australian workplaces: cross-sectional analysis and modelling the impact of a targeted noise-source reduction initiative

Author:

Lewkowski Kate1ORCID,Heyworth Jane S2,McCausland Kahlia1,Williams Warwick3,Fritschi Lin1ORCID

Affiliation:

1. School of Population Health, Curtin University , Kent Street, Bentley, Perth, WA 6012 , Australia

2. School of Population and Global Health, The University of Western Australia , Clifton Street, Nedlands, WA 6009 , Australia

3. National Acoustics Laboratory , 16 University Ave, Macquarie Park, Sydney, NSW 2109 , Australia

Abstract

Abstract Context Workplace noise regulations and guidance follow the hierarchy of control model that prioritizes eliminating or reducing noise at its source. Objectives To determine the main sources of workplace noise exposure in the Australian working population and estimate the reduction of workers exposed over the noise limit (LAeq,8h > 85 dB) if noise levels of specific tools or equipment were reduced by 10 dB. Methods Information on the tools used and tasks performed during each participant’s last working shift was collected from 4,977 workers via telephone survey. Using a predetermined database of task-based noise levels, partial noise exposures (Pa2h) were determined for each noisy activity performed by the workers and their daily noise exposure level (LAeq,8h) was estimated. Partial exposures were categorized into 15 tool/task groups and the tally, average, and sum (Pa2h) for each group were calculated. The impacts of 5 different scenarios that simulated a reduction of 10 dB in noise emissions for specific tool groups were modelled. Results Powered tools and equipment were responsible for 59.3% of all noise exposure (Pa2h); vehicles for 10.6%; mining, refineries, and plant equipment for 5.1%; and manufacturing and food processing for 4.2%. Modelling demonstrated that a 10 dBA noise-level reduction of all powered tools and equipment would lead to a 26.4% (95% confidence interval: 22.7% to 30.3%) reduction of workers with an LAeq,8h > 85 dB. This could represent over 350,000 Australian workers no longer exposed above the workplace limit daily. Conclusions A universal reduction of 10 dB to power tools and equipment would substantially reduce the future burden of hearing loss, tinnitus, workplace injuries, and other health effects. Initiatives to reduce the noise emissions of specific powered tool groups are warranted.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Reference36 articles.

1. The noise/stress concept, risk assessment and research needs;Babisch;Noise Health,2002

2. Buy quiet initiative in the USA;Beamer;Acoust Aust,2016

3. Some possibilities for reducing circular saw idling noise;Beljo-Lučić;J Wood Sci,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3