Testing and Validating Semi-automated Approaches to the Occupational Exposure Assessment of Polycyclic Aromatic Hydrocarbons

Author:

Santiago-Colón Albeliz1ORCID,Rocheleau Carissa M1,Bertke Stephen1,Christianson Annette12,Collins Devon T34,Trester-Wilson Emma3,Sanderson Wayne3,Waters Martha A1,Reefhuis Jennita5

Affiliation:

1. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA

2. Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA

3. Department of Epidemiology, University of Kentucky, College of Public Health, Lexington, KY, USA

4. Inova Fairfax Medical Campus, Falls Church, VA, USA

5. Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, GA, USA

Abstract

Abstract Introduction When it is not possible to capture direct measures of occupational exposure or conduct biomonitoring, retrospective exposure assessment methods are often used. Among the common retrospective assessment methods, assigning exposure estimates by multiple expert rater review of detailed job descriptions is typically the most valid, but also the most time-consuming and expensive. Development of screening protocols to prioritize a subset of jobs for expert rater review can reduce the exposure assessment cost and time requirement, but there is often little data with which to evaluate different screening approaches. We used existing job-by-job exposure assessment data (assigned by consensus between multiple expert raters) from a large, population-based study of women to create and test screening algorithms for polycyclic aromatic hydrocarbons (PAHs) that would be suitable for use in other population-based studies. Methods We evaluated three approaches to creating a screening algorithm: a machine-learning algorithm, a set of a priori decision rules created by experts based on features (such as keywords) found in the job description, and a hybrid algorithm incorporating both sets of criteria. All coded jobs held by mothers of infants participating in National Birth Defects Prevention Study (NBDPS) (n = 35,424) were used in developing or testing the screening algorithms. The job narrative fields considered for all approaches included job title, type of product made by the company, main activities or duties, and chemicals or substances handled. Each screening approach was evaluated against the consensus rating of two or more expert raters. Results The machine-learning algorithm considered over 30,000 keywords and industry/occupation codes (separate and in combination). Overall, the hybrid method had a similar sensitivity (87.1%) as the expert decision rules (85.5%) but was higher than the machine-learning algorithm (67.7%). Specificity was best in the machine-learning algorithm (98.1%), compared to the expert decision rules (89.2%) and hybrid approach (89.1%). Using different probability cutoffs in the hybrid approach resulted in improvements in sensitivity (24–30%), without the loss of much specificity (7–18%). Conclusion Both expert decision rules and the machine-learning algorithm performed reasonably well in identifying the majority of jobs with potential exposure to PAHs. The hybrid screening approach demonstrated that by reviewing approximately 20% of the total jobs, it could identify 87% of all jobs exposed to PAHs; sensitivity could be further increased, albeit with a decrease in specificity, by adjusting the algorithm. The resulting screening algorithm could be applied to other population-based studies of women. The process of developing the algorithm also provides a useful illustration of the strengths and potential pitfalls of these approaches to developing exposure assessment algorithms.

Funder

Centers for Disease Control and Prevention

National Institutes of Health

National Institute for Occupational Safety and Health

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models in Occupational Hygiene;Annals of Work Exposures and Health;2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3