Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment

Author:

Kasner Edward J1ORCID,Fenske Richard A1,Hoheisel Gwen A2,Galvin Kit1,Blanco Magali N1,Seto Edmund Y W1,Yost Michael G1

Affiliation:

1. Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, WA, USA

2. College of Agricultural, Human, and Natural Resource Sciences, Area Extension Education, Washington State University, Prosser, WA, USA

Abstract

Abstract Pesticide spray drift represents an important exposure pathway that may cause illness among orchard workers. To strike a balance between improving spray coverage and reducing drift, new sprayer technologies are being marketed for use in modern tree canopies to replace conventional axial fan airblast (AFA) sprayers that have been used widely since the 1950s. We designed a series of spray trials that used mixed-effects modeling to compare tracer-based drift volume levels for old and new sprayer technologies in an orchard work environment. Building on a smaller study of 6 trials (168 tree rows) that collected polyester line drift samples (n = 270 measurements) suspended on 15 vertical masts downwind of an AFA sprayer application, this study included 9 additional comparison trials (252 tree rows; n = 405 measurements) for 2 airblast tower sprayers: the directed air tower (DAT) and the multi-headed fan tower (MFT). Field-based measurements at mid (26 m) and far (52 m) distances showed that the DAT and MFT sprayers had 4–15 and 35–37% less drift than the AFA. After controlling for downwind distance, sampling height, and wind speed, model results indicated that the MFT [−35%; 95% confidence interval (CI): −22 and −49%; P < 0.001] significantly reduced drift levels compared to the AFA, but the DAT did not (−7%; 95% CI: −19 and 6%; P = 0.29). Tower sprayers appear to be a promising means by which to decrease drift levels through shorter nozzle-to-tree canopy distances and more horizontally directed aerosols that escape the tree canopy to a lesser extent. Substitution of these new technologies for AFA sprayers is likely to reduce the frequency and magnitude of pesticide drift exposures and associated illnesses. These findings, especially for the MFT, may fit United States Environmental Protection Agency’s Drift Reduction Technology (DRT) one-star rating of 25–50% reduction. An ‘AFA buyback’ incentive program could be developed to stimulate wider adoption of new drift-reducing spray technologies. However, improved sprayer technologies alone do not eliminate drift. Applicator training, including proper sprayer calibration and maintenance, and application exclusion zones (AEZs) can also contribute to minimizing the risks of drift exposure. With regard to testing DRTs and establishing AEZs, our study findings demonstrate the need to define the impact of airblast sprayer type, orchard architecture, sampling height, and wind speed.

Funder

National Institutes of Health

U.S. Department of Health and Human Services

Centers for Disease Control and Prevention

National Institute for Occupational Safety and Health

Pacific Northwest Agricultural Safety and Health Center

Washington State Medical Aid & Accident Funding Initiative

University of Washington Department of Environmental and Occupational Health Sciences

Washington State University Tree Fruit Research & Extension Center, Washington Tree Fruit Research Commission

Vine Tech & Equipment

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference54 articles.

1. Limit of blank, limit of detection and limit of quantitation;Armbruster;Clin Biochem Rev,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3