Engineered Stone Fabrication Work Releases Volatile Organic Compounds Classified as Lung Irritants

Author:

Ramkissoon Chandnee1ORCID,Gaskin Sharyn1ORCID,Hall Tony2,Pisaniello Dino1ORCID,Zosky Graeme3

Affiliation:

1. Adelaide Exposure Science and Health, School of Public Health, University of Adelaide , Adelaide, SA 5031 , Australia

2. Mawson Analytical Spectrometry Services, School of Physical Sciences, University of Adelaide , Adelaide, SA 5000 , Australia

3. Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania , Hobart, TAS 7000 , Australia

Abstract

Abstract Engineered stones are often characterized for their crystalline silica content. Their organic composition, particularly that of the emissions generated during fabrication work using hand-held power tools, is relatively unexplored. We forensically screened the emissions from dry-cutting 12 engineered stone products in a test chamber for their organic composition by pyrolysis-gas chromatography-mass spectrometry (GC-MS) plus selected traditional capture and analysis techniques. Phthalic anhydride, which has a Respiratory Sensitization (RSEN) Notation by the American Conference of Governmental Industrial Hygienists (ACGIH), was the most common and abundant compound, at 26–85% of the total organic composition of engineered stone emissions. Benzaldehyde and styrene were also present in all twelve samples. During active cutting, the predominant volatile organic compound (VOC) emitted was styrene, with phthalic anhydride, benzene, ethylbenzene, and toluene also detected. These results have important health implications as styrene and phthalic anhydride are irritants to the respiratory tract. This study suggests a risk of concurrent exposure to high levels of respirable crystalline silica and organic lung irritants during engineered stone fabrication work.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3