Comparison of the Analysis of Respirable Crystalline Silica in Workplace Air by Direct-on-Filter Methods using X-ray Diffraction and Fourier Transform Infrared Spectroscopy

Author:

Ichikawa Akemi1,Volpato John1,O’Donnell Gregory E1,Mazereeuw Martin1

Affiliation:

1. Chemical Analysis Branch, TestSafe Australia—SafeWork NSW, Thornleigh, NSW, Australia

Abstract

Abstract A comparison of the analysis of respirable crystalline silica direct-on-filter methods using X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy was undertaken using 253 real workplace air samples from road construction and tunnelling, coal mining, and kitchen benchtop manufacturing in Australia. Using pure α-quartz standards, XRD and FT-IR direct-on-filter analyses produced identical test results, however, the real workplace samples showed a clear discrepancy between FT-IR and XRD results with on average a 9% positive bias of the FT-IR results. The cause of the positive bias was due to matrix interferences which was confirmed by using synthetic mixture air samples. Approximately a third of the data by direct-on-filter method using FT-IR was assessed to be invalid based on the peak height ratio criterion due to excessive interferences and weight overload limitations. The XRD method showed better results due to less interference from the common matrices. XRD could handle up to twice the sample loading and at higher loadings up to 7 mg when a correction was applied. It was also able to achieve a lower limit of detection of 2 µg filter−1 when a slower scan condition was utilized.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference32 articles.

1. Quantitative X-ray diffractometry on respirable dust collected on nuclepore filters;Altree-Williams;Ann Occup Hyg,1977

2. Measuring agreement in method comparison studies;Bland;Stat Methods Med Res,1999

3. Comparison of quartz standards for X-ray diffraction analysis: HSE A9950 (Sikraon F600) and NIST SRM 1878;Chisholm;Ann Occup Hyg,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3